



# Moving Target Monitoring in Video Surveillances

Name : Tong ZHAOMajor : Information SecurityAdvisor: Jie GUO

2014/10/22



### **Research Background**

> The surveillance camera system is widely used in our daily life.

Video data currently is used only "after the fact" as a forensic tool, thus losing its primary benefit as an active, real-time medium





### **Experimental Method**

Python: a high-level programming language for general-purpose programming

OpenCV: a library of programming functions mainly aimed at real-time computer vision









### Background Modeling Based on Gaussian Mixture Models

### Scheme Comparison

| Scheme                                             | Advantage                                                | Disadvantage                                                                               |  |
|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| Mean Value Modeling                                | less calculation, high velocity                          | Big storage space, moving<br>objects with low velocity will<br>be recognized as background |  |
| Single Gaussian<br>Background Modeling             | less calculation, high velocity,<br>small storage space  | Influenced by illumination and moving foreground                                           |  |
| Gaussian Mixture<br>Background Modeling            | the shadow and noise of its movement foreground are less | More calculation                                                                           |  |
| Final choice: Gaussian Mixture Background Modeling |                                                          |                                                                                            |  |
| Reason: it could deal with complicated environment |                                                          |                                                                                            |  |



### Background Modeling Based on Gaussian Mixture Models

Results



#### Raw image

#### Gaussian mixture model







## Morphology filtering

### Base operation

|           | Erosion                                                                             | Dilation                                                            |
|-----------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Principle | It eliminates the boundary<br>point and causes the<br>boundary to shrink internally | It expands the shapes<br>contained in the input<br>image.           |
| Effect    | Small objects in the foreground will be ignored                                     | Figures that are very<br>lightly drawn get thick<br>when "dilated". |



# Morphology filtering

Results



#### Raw image



**Image after erosion** 



Image after dilation







### Camshift Algorithm



### Camshift



### Camshift Algorithm





### A tracking algorithm based on modified Camshift

(1) Need to choose moving objects artificially, could not match targets automatically

(2) Could only tracking one moving object





#### > A tracking algorithm based on modified Camshift









## **Cross-border warning**

#### Algorithm Analysis









## **Problem Analysis**

### 1 The retardance of gaussian mixture modeling

The Gaussian mixture modeling assumes that all pixels in the 1<sup>st</sup> frame are background. Since it updates the background by comparing differences between each two frames, the algorithm cannot do the modeling properly during the first 2-3s if there are some moving objects in the first frame, which leads to an error for following object detection.

#### The 1<sup>st</sup> frame



The 25<sup>th</sup> frame



#### The 9<sup>th</sup> frame



#### The 50<sup>th</sup> frame





## **Problem Analysis**

### 2 The strong dependency of details

This algorithm has strong dependency of details. When there is a moving object whose color is similar to our background or whose velocity is high, it cannot find its trajectory properly, which leads to the losing of objects.





### Conclusion

#### Content

(1) The analysis of background modeling algorithm

(2) Camshift tracking algorithm

(3) Cross-border warning

#### Prospect

(1) Improve the robustness of the algorithm

(2) Make it more intelligent

(3) Be able to tracking complicated trajectory







