Variational Shape Reconstruction via Quadric Error Metrics

Tong Zhao, Laurent Busé, David Cohen-Steiner, Tamy Boubekeur, Jean-Marc Thiery, Pierre Alliez

Input : A point cloud with/w.o. unoriented normals

Output : A concise mesh which is

- ✓ feature-perserving
- ✓ orientable

 \checkmark favoring anisotropic triangles

WHY QEM ?

Quadric error metric (QEM) is a powerful tool for mesh processing. It is:

- Feature-aware
- Orientation-independant
- Fast and effective

3iA Côte d'Azur

Interdisciplinary Institute for Artificial Intelligence

Innía

Adobe

UNIVERSITÉ CÔTE D'AZUR

TELECOM

Paris

Robust to noise

while it is rarely used in point cloud processing.

WHY VARIATIONAL?

Designing a coarse-to-fine variational method allows us to have a low

memory footprint.

OUR METHOD: OEM - VSR

Step 1: Intialization

(1) Local normal and area estimation based on K-nearest neighbor graph.

Normal: Principal component analysis or Jet fitting.

(2) QEM initialization

Area:
$$a_{p_i} = \frac{1}{2k^2} \cdot \left(\sum_{p_j \mid (p_i, p_j) \in KNN(\mathcal{P})} \left\| p_i - p_j \right\|^2 \right)$$

$$\underline{\text{Plane quadric}}: Q_{p_i} = \left(n_i^x, n_i^y, n_i^z, -n_i \cdot p_i^T\right)^T \cdot \left(n_i^x, n_i^y, n_i^z, -n_i \cdot p_i^T\right) \quad \underline{\text{Point quadric}}: Q_{v_i} = \sum_{p_j \mid (p_i, p_j) \in KNN(\mathcal{P})} a_{p_j} \cdot Q_{p_j}$$

(3) Generator initialization: random selection from input points.

Step 2: Clustering

(1) Partitioning (Expectation-Step)

The cost of adding the i^{th} point to the j^{th} cluster is:

$$E(p_i, l_j) = [c_j, 1]^T \cdot Q_{v_i} \cdot [c_j, 1] + \lambda \cdot ||p_i - c_j||^2$$

$$QEM \text{ error} L2 \text{ error}$$

Step 3: Meshing

(1) Edge candidate: derived from the adjacency between clusters.

(2) Face candidate selection: derived from finding 3-cycles of edge candidate set.

(only for ill-posed regions) (2) Updating (Maximization-Step) The optimal generator of the j^{th} cluster is: $c_j^* = \underset{p \in \mathbb{R}^3}{\operatorname{argmin}[p, 1]^T \cdot Q_{c_j} \cdot [p, 1]}$ $\max_{\{b_{f_1}, \dots, b_{f_n}\}} \sum_{i=1}^n b_{f_i} \cdot E_{fitting}(f_i)$

(3) Batch splitting

Add the point maximizing *E* as a new generator if criterion fails.

$$p_{max}(l_j) = \underset{p_i \in l_j}{\operatorname{argmax}} [p_i, 1]^T \cdot Q_{c_j} \cdot [p_i, 1]$$

s.t. $2b_{e_i} - \sum_{f_j \text{ around } e_i} b_{f_j} = 0$ (Manifold constraint)

SIGGRAPH 2023 LOS ANGELES+ 6-10 AUG

Contacts : Tong Zhao (zhaotong.patricia@gmail.com) / Pierre Alliez (pierre.alliez@inria.fr)

Variational Shape Reconstruction via Quadric Error Metrics

Tong Zhao, Laurent Busé, David Cohen-Steiner, Tamy Boubekeur, Jean-Marc Thiery, Pierre Alliez

3iA Côte d'Azur

Contacts : Tong Zhao (zhaotong.patricia@gmail.com) / Pierre Alliez (pierre.alliez@inria.fr)